The secant method

1. Use three steps of the secant method to approximate a root of the function $f(x) \stackrel{\text { def }}{=} \frac{\sin (x)}{x}+e^{-x}$ starting with $x_{0}=3.0$ and $x_{1}=3.2$.

Answer: To ten significant digits, we have 3.0, 3.2, 3.260614340, 3.266354278, 3.266500105
2. Use three steps of the secant method to approximate a root of the function $f(x) \stackrel{\text { def }}{=} x^{3}-3 x+1$ starting with $x_{0}=-1.5$ and $x_{1}=1.3172$.

Answer: To ten significant digits, we have $-1.5,1.3172,0.6447658186,27376.62957,0.6447658195$.
3. What is the cause for the sequence of approximations in Question 2?

Answer: First, $f\left(x_{1}\right)$ approximately equals $f\left(x_{2}\right)$, so the denominator is very small, but next, $f\left(x_{3}\right)$ is huge, and therefore x_{4} ends up being very close to x_{2} again.
4. If you continue to iterate the secant method in Question 2, what root does it converge to?

Answer: To ten significant digits, 0.3472963553
5. If you iterated the secant method in Question 2 but starting with $x_{1}=1.4$, what root does it converge to?

Answer: To ten significant digits, 1.532088886.
6. In general, should you apply the secant method if you don't already have an idea as to what a root of a function is?

Answer: In general, no. The secant method is a tool to refine an approximation of a root, not to check if a function has a root. If you start with an arbitrary initial point, it may or may not converge to a root if there is one, so non-convergence does not suggest there is no root.
7. The function x^{2} has a double root at $x=0$. Apply the secant method starting with the initial value $x_{0}=1$ and $x_{1}=0.5$. Is the convergence still $\mathrm{O}\left(h^{\phi}\right)$?

Answer: No, with a double root, the rate of convergence becomes $\mathrm{O}(h)$ and if you examine this example closely, the error drops by h / ϕ where ϕ once again is the golden ratio.

